Core courses – 20 ECTS (5 ECTS for each course):
• Artificial Intelligence: The purpose of this course is to give an overview of the main techniques of artificial intelligence and a thorough understanding of how to apply them to the robotics and autonomous systems.
• Robotics: The course will focus on the kinematics and control of mobile robots, the environment perception, probabilistic localization and mapping, as well as movement planning. The courses and exercises of this course present several types of robots such as wheeled robots, leg robots and drones. Practical work will be performed with drones.
• Advanced control: In this course different control techniques will be taught such as Robust, nonlinear, model predictive controls.
• Research project on a subject related to robotic systems, autonomous vehicles, and drones. Students will be integrated into research teams of partner laboratories.
Elective courses – 10 ECTS (2 courses out of 4):
• Smart transportation: This course will present a diverse but synergistic body of knowledge in order to understand the functioning of the future smart city and mobility.
• Cyber-security and embedded systems for robotics: This course aims to develop skills necessary for the development and implementation of embedded systems. Students will study the particular constraints of "embedded" robotic-type systems such as implementation constraints and the limits in terms of security, as well as the implementation of deep security approaches combining infrastructure and stand-alone systems. The normative aspects related to robots and drones will be used in these approaches.
• Distributed optimization and estimation: This course will be applied on several robotic communicating robotic mobile systems. It aims at presenting different architectures distributed optimization and identification to obtain experimentally parameters of nonlinear models of robots. Moreover, these techniques allow to control dynamically a group of underlying robots to best fit a common situation.
• Diagnostic, reliability and prognostic: The objective of this course is to present the problem of monitoring, diagnosis, reliability, and predictive maintenance, and its application issues in the field of robotics and autonomous systems.
Scientific culture course:
???????
• Seminars
• Laboratory visits and business
• Management of technical innovation
• Scientific ethics
• French language (FLE)